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ABSTRACT

A new technique has been developed for the weighting of data from

satellite tracking systems in order to obtain an optimum least-squares

solution and an error calibration for the solution parameters. Data

sets from optical, electronic, and laser systems on 17 satellites in

GEM-TI (Goddard Earth Model, 36x36 spherical harmonic field) have been

employed toward application of this technique for gravity field

parameters. Also GEM-T2 (31 satellites) was recently computed as a

direct application of the method and is summarized here. The method

employs subset solutions of the data associated with the complete

solution and uses an algorithm to adjust the data weights by requiring

the differences of parameters between solutions to agree with their

error estimates. With the adjusted weights the process provides for an

automatic calibration of the error estimates for the solution

parameters. The data weights derived are generally much smaller than

corresponding weights obtained from nominal values of observation

accuracy or residuals. Independent tests show significant improvement

for solutions with optimal weighting as compared to the nominal

weighting. The technique is general and may be applied to orbit

parameters, station coordinates, or other parameters than the gravity

model.
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I. INTRODUCTION

The method of data weighting has been an outgrowth of a

calibration process for the error estimation of gravitational models

that have been derived from satellite data, Lerch et al. (1985 and 1988)

and Wagner and Lerch (1978). The principle of the new technique is to

estimate the weighting of the data so as to produce realistic error

estimates of the solution parameters from subset solutions of least

squares normal equations. Application has generally been with use of a

large set of satellites with inhomogeneous data from tracking systems of

laser, electronic, and camera (optical) data. me gravity model of

GEM-TI (Marsh et al., 1988) using some 17 satellites has been tested

with the new technique and the GEM-T2 (Marsh et al., 1989) solution with

some 31 satellites has been derived with the new process of optimum

weighting of the satellite data sets.

The accuracy estimation of the gravity model is particularly

important for the TOPEX Project (1992 launch) for ocean application of

its altimetry. It requires that the radial orbit error be accurate to

better than 10 cm due to the uncertainty of the gravity field. Hence

the estimation process for the errors, which are based upon the weights

assigned to the data, must be reliable. The accuracy of the solutions,

particularly the low degree field, is also important for the Lageos

orbit. Accuracy is needed for the estimation of baseline motion of

laser tracking sites at the centimeter per year level as part of the

NASA Crustal Dynamics Project.

4O4



2. OBSERVATION WEIGHTING AND DATA CHARACTERISTICS

Observations obtained from geodetic satellite tracking systems

generally have precision levels, particularly laser systems, much better

than the observation residuals obtained from satellite orbital arcs in

post fit analyses using the best models. This is true even though the

orbital models employed were derived from the same satellite data and

with the same arc lengths of several days. The problem here is that

there are unmodeled systematic errors (biases) which need to be

accounted for in the weighting system of the solution (Brown, 1988).

In Figure I an example of the characteristics of the residuals is

shown for a pass of data from a typical laser tracking site. The

precision error (oo) of the laser data is generally small (centimeter

level) as compared to the rms (ct) of the residuals for a satellite data

set t. Values of ot are given in Tables IA and IB (GEM-TI and T2 data

sets) for different satellite data types and for laser systems ot varies

from 10 cm for Lageos orbits to over 50 cm on GEOS-I orbital data in

1978.

Note in Figure I that the residuals of a tracking pass with noise

removed fit very closely to a straight line as a function of a bias

offset (bo) and a timing error. The bias offset is the dominant part of

the residuals. If the residuals were random with rms equal to ot the

weight per observation point should be

w t = I/ot 2 ,

but with a constant offset (bo) , say for N=50 points in a pass, the

weight should be degraded by

w t = I/No2t = .02/o2t .
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The latter case is characteristic of our situation particularly for the
high precision laser data. The bias effects per pass tend to fluctuate
randomly from pass to pass.

In general for a given satellite data type t we have

Wt = ftlo_

where ot is the rms of residuals for the satellite data set and ft is a
downweighting factor to account for the bias effects and the correlated

effects of the residuals particularly within the pass. The weighting
technique will obtain wt directly. Note from Table IA (and IB), o as

well as ot is given for each data type where

Wt : 1/;2t

hence

ft = (°t/°t)2

which is approximately a constant

ft = .01

for the satellites with the laser data. In Table IB for the Starlette

('86) and AJISAI laser data_f t _ .002 where the data weight rates were 5

times faster (I per second as compared to I per 5 seconds). Note also

for the optical where systems with passive (non-flashing lamps) camera

dat_ the degradation(faeto_is much less, namely

ft = .20
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which may be expected since the number of points per pass are fewer and

the ratio of noise to bias is relatively more significant than with the

laser data.
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3. LEASTSQUARESMINIMIZATION

The method of solution is a modified least squares process which

minimizes the sum (Q) of signal and noise as follows:

2 2 2
rit

Q : Z C_'m + S_'m + f Z Z T ft (I)

_,m o2& t obs ot
i

where the signal is given by

C_,m, S_,m:
spherical harmonics comprising the solution

coefficients; and

I 10 -5

oE: -- x

is rms of the coefficients of degree _ (a priori

rule) and is introduced to permit larger solu-

tions to degree and order 36x36. This law,

based upon Kaula's rule, has been obtained inde-

pendently from studies of the spectra of the

Earth's gravity field and is used here to repre-

sent the observed power within the geopotential.

and the noise by

rit :

observation residual (observed-computed)

for the ith observation of satellite

tracking data set (type) t; and

a t :

ft :

RMS of observation residuals (generally

significantly greater than a priori

data precision)

downweighting factor to compensate for unmodeled

error effects for each data type t (ideally f=1 for

pure noise)

The optimum weighting method estimates the combined weight

directly, namely
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Wt : ftlo_ •

Whenminimizing Q above using the least squares method, the normal

matrix equation and error covariance is obtained as follows:

are the normal equations, where x is theNx = R solution, R is the vector of residuals, and

is the approximate form for the variance-
V = N-I covariance error matrix which must be
zz calibrated by adjusting the weighting.

The process of minimizing both signal (Kaula constraints) plus

noise in (I) is also knownas collocation by Moritz (1978). With the
normal least squares approach (noise-only minimization) there is a

problem of separability due to the strong correlation between many of
the high degree coefficients. The absenceof collocation (GEM-TIwithout
the Kaula constraint) results in excessively large power in the

adjustment of the potential coefficients. Figure 2 illustrates the
instability of the least-squares solution when collocation is not
used. A satellite-derived gravity solution has been solved without

collocation which is evaluated using a global set of independent gravity

anomalies. An unrestricted high degree field performs poorly due to

excessively large adjustment in the coefficients which is normally
circumvented in the standard least-squares method by solving for a

smaller sized field. Unfortunately, by restricting the size of the

field, one also is requiring the higher degree terms above the field
limits to be constrained absolutely to zero. Figure 2 also shows the
disadvantage of this approach where the smaller sized field (PGS-3067)

contains aliasing in its coefficients and does not perform well. (The
abbreviation PGSstands for Preliminary Gravity Solution.) The aliasing

signal sensed in the data above the field limits is absorbed into the
adjustment of the lower degree coefficients. The best approach is seen
with the least squares collocation (or constrained) solution, GEM-TI,

with a complete solution of a 36x36 field in harmonics.
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4. LEASTSQUARESNORMALEQUATIONS

In matrix form the observation equation is given by, assuming

linearity,

O- C : r : r - Ax
O

x:X-X R

(3)

where

r : 0 - C --- residual, observation (0) minns computed value (C)

from solution

x : X - XR--- adjustment of solution (X) from reference value

(XR) (for error analysis XR _ X(true))

--- matrix of partials evaluated at X : X R

r o --- residuals based upon a priori value XR.

For the gravity field, the linearity of perturbations may be seen for

the spectrum of harmonics in Kaula (1966). The weighted normal

equations are where W is a diagonal weight matrix (Lawson and Hanson,

1974)

ATwr : 0

then from (I)

ATWAx : ATwr (4)
O

For error analysis it is convenient I:o let the reference value
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XR = X(true)

then from (3) x is the error in the solution X, namely

x = X - X(true)

Hence (4) becomes

ATWAX : ATwe (5)

where

e _ r ° : 0 - CR

= 0 - C(true)

represents the errors due to all unmodeled systematic effects including

random noise but excluding errors in the adjusted parameters. Instead

these are the errors in x given by the solution to (5). Our solutions

will be represented by the form (5) as we are interested in the
^

difference between two solutions, x and x, namely

^

x - x : IX - X(true)] - [X - X(true)]

=X-X

(6)

The normal matrices for (5) are written compactly as

Nx : R

where
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N : ATwA

R : ATwe

(7)

The normal matrices for each data subset twlll be given as

wt Nt = wtA_A t

(8)
T

wtR t : wtA_e t

where t=O is a special case which corresponds to the signal constraints

where the weight is fixed.
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5. METHOD OF ESTIMATION OF WEIGHTS

The technique for estimating wt for each data set t is based upon

a complete solution (S) with all the data and a subset solution (St)

where data set t is removed. Let the normal equations for the complete

solution x and the subset solution xt be given as in (7) namely

Nx : R (9)

Nx =R
t

where from (7)

= win0 wjRj
jSt J$t

(lO)

N = N + wtN t R = R + wtR t

The covariance (variance-covarlance) matrices (V) for the errors ×

and xt are obtained as

V(x) = N-I m E(xx T)

(11)

V(xt ) : _-I _ E(xtx_ )

As in (6)

xt-x = [Xt - X(true)] - [X - X(true)]

: Xt-X

(12)

The covarianee of the difference between the solutions is
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T
V(xt-x) : E(xt-x)(xt-x )

: V(xt)-2 E(xtxT)-v(x) (13)

: V(xt) - V(x)

where as shown below

E(xtxT) = V(x) (14)

From (9)

E(xtxT ) : _-I E(R RT) N-I (15)

From (10) and (11)

E(R RT) : E[R(R + wtRt )T]

: E(R _T) = _ V(xt )

=

(16)

since

T
R(_ Rt) : 0

The latter result is true as from (10) the data set t is excluded from

the subset solution, making R and Rt independent. Hence (14) results

by substituting (16) into (15) and using (11).

414



5.1 WEIGHTING ALGORITHM

Using just the gravity parameters in (Xt-X) the

algorithm is given by the calibration factor kt obtained from

(Xt-x)T(xt-x) : (xt-x)T(xt-x) : kt TR V(xt-x)

weighting

(17)

where TR denotes the trace of the matrix and where from (9) through (13)

xt-x = N-IR - N-IR = Xt-X (18)

: _ wjNj (19)
JSt

N : N + wtN t

= [ wjRj (20)
j¢t

R = R + wtR t

_-IV(xt-x) : - N : V(xt) - V(x) (21)

Since kt scales the error variances it will be inversely

proportional for scaling the weight wt to obtain the adjusted weight

w_, namely

w t = wt / kt (22)

This latter result will be derived more directly below. By iterating on

the solutions xt for each data set t and the complete solution x for all

data sets until

kt- I
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for each t, the weights by (22) will then converge and the error

estimates will automatically be calibrated from (17).

Results are given below to show how the weights and associated

calibration factors converge. Because of the extensive computations for

a large number of data sets a reasonable set of a priori values for the

weights should be available for their refinement in the optimization

process.

The gravity parameters of spherical harmonic coefficients are

calibrated as a set by (17). Calibrations (kt) are also given by

subsets of spectral components from the harmonics of degree _ and order

m. For all satellite data sets t (Lerch et al., 1988) relatively little

variation is seen in the spectral calibrations.

5.1.1 Weighting Adjustment

The relation (18) for the weighting adjustment

w_ : wt/k t

is derived from use of (17) through (21). It is assumed that the data

set t does not significantly change the solutions x and xt beyond first

order effects as follows:

V(xt_x ) : _-I _ N-I : _-I _ (_+wtNt)-1

= _-I _ (I+wtNt)-1_-1

= wt_-1 Nt _-I

(23)

To the same approximation
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xt-x = wt _-I Rt

2 _-1 E( RT _-1£(xt-x)(xt-x)T = wt Rt t ) (24)

From (8)

T E(ete_ ) AtE(RtRt T) = At

"2
= ot Nt

(25)

= Ntlw _

where ot accounts for the unmodeled systematic effects in et and the

corresponding weighting effect is given as

I 2
w_ - ='_ - ft/ot

° t

Using (23) and (25) then (24) beoomes

wt

E(xt'x)(xt'x)T = w"_ V(xt'x)

From (26) and (17)

(26)

kt = wt/w t

which gives the result (22).
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6. TESTS AND RESULTS FOR OPTIMUM WEIGHTING TECHNIQUE

Sample tests of the weighting algorithm (22) were made using

GEM-TI plus additional data sets for several satellite data types of

laser, optical, and electronic data. Results are given in Table 2 which

show that the algorithm nearly converges in one step from the a priori

starting weights. Plots of wt vs kt from (17) show a strong linear

relationship from the origin (wt = kt = 0). Hence

W _ W

k ° - k

and by setting k" = I for calibration the adjusted weight w" should

nearly converge from (22).

The above tests were made in preparing the weights for additional

data sets to GEM-TI that were combined for the GEM-T2 model. The

convergence of these weights for GEM-T2 is shown in Table 3. In

addition to the optimum weights the technique provides an automatic

calibration of the error estimates based upon the satellite data types t

since each of the kt from (17) is required to converge to I.

The data weights in GEM-TI were derived primarily by requiring the

weight for each data type t to give the best overall agreement with

independent mean gravity anomalies (Rapp, 1986) and with the satellite

observation residuals on selected test arcs. The calibration factors

(ktl/2) for several of the major data types (Lerch et al., 1988) are

given in Table 4 which show that the weights converge (kt _ I) except

for the Lageos laser data. However, several additional tests were made

in Table 4 for the calibration factor using independent data from Seasat

altimetry (Rapp, 1986) and surface gravity data (Pavlis, 1988). All of

the latter tests show good calibration of the error estimates,

indicating optimum weighting was closely achieved. The last test

deliberately increased the weighting for a subset of laser data by a
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factor of 10 giving a value kt=(2.75) 2. From (22) the adjusted weight

should be reduced by a factor of I/k t which would nearly recover the

original weight in one step of the iteration process. The gravity model

with the increased weight naturally gives smaller error estimates but it

also gave significantly worse agreement with independent surface gravity

anomalies.
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7. SUMMARY

The optimum weighting technique was shown to be important in the

weighting of satellite data, particularly precise laser data where

unmodeled systematic effects require a significant downweighting factor

as shown in Table I. The method of weighting was shown in Section 6.0

to provide realistic error estimates for GEM-TI and T2. These models

were calibrated using subset solutions based not only on data employed

in their solutions but also upon independent data from altimetry and

gravimetry. Because of the important application of the gravity model

to ocean altimetry in the Topex Project, the gravity model errors were

projected on the radial component of the TOPEX orbit and the result gave

10 cm for GEM-T2 which nearly meets the goal of the gravity model.

It was also shown in Section 6.0 that the model with the increased

weight on the data over the optimum weighting gave much poorer agreement

with independent surface gravity anomalies. The optimum weighting

technique based upon the mathematical formulae is general and may be

applied to other than gravitational parameters such as station

coordinates and in particular orbit parameters where knowledge of

accuracy estimation and refined solutions are needed.
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Figure I.

Characteristics of a Pass of Orbital Laser Residuals

at a Tracking Site in Post Fit Analysis
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Figure 2

GRAVITY MODELCOMPARISON WITH 1114

5° X 5° SEASAT GRAVITY ANOMALIES
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Models show three modes of solution. The 25 x 25 field solves GEM-T1 tracking

data without the Kaula .constraint showing misclosure for high degree terms.

PGS-3167 solves GEM-T1 data (with Kaula constraint) to the GEM-L2 size field

(20 x 20). showing no improvement over ourprevious model. GEM-T1 uses the
Kaula constraint with a high degree field (36 x 36) and is free of the above
problems.
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TABLE 1A

SATELLITE DATA

SATELLITE

1 LAGEOS

2 STARLETTE

3 GEOS-3

4 PEOLE

5 BE'C

6 GEOS-1

7 GEOS-2

8 DI-C

9 01-0

SENI HAJOR

AXlS (kin.]

12273.

7331.

7226.

7006.

7507,

6075.

7711.

73_1.

7622.

10 SEASAT

110SCAR-I_

12 ANNA-1B

13 BE-B

14 COURIER-1B

15 TELSTAR-1

16 VANGUARD-2RB

17 VANGUARD-2

7170.

74_0.

7501.

7354.

7_69.

9669.

8496.

8298.

ECC

.0038

.0204

.0008

.0164

.0257

.0719

.0330

.0532

.08_8

.0021

.0029

.0082

.0135

.0161

.2429

.1832

.1641

INCL DATA

DEO TYPE

109.85 LASER

49.80 LASER

114.98 LASER

15.01 LASER

41.19 LASER

CAMERA

59.39 LASER

CAMERA

105.79 LASER

CANERA

39.97 LASER

CAMERA

39.46 LASER

CAMERA

108,02 LASER

DOPPLER

89.27 DOPPLER

50.12 CAMERA

79.69 CAMERA

28.31 CAMERA

44.79 CAMERA

32.92 CAMERA

32.89 CANERA

1

•

IN GEM-T1

# or # or

ARCS OBS

57 144527

46 57356

36 k2407

6 4113

39 64240

50 7501

48 71267

43 60750

28 26613

46 61_03

4 7455

10 2712

6 11487

9 6111

14 14923

14 138042

13 63098

30 4463

20 1739

10 2476

30 3962

10 686

10 1299

RMS

RESID.

o
t

10cm.

20cm.

70cm.

90cm.

50¢m.

2 Ircsec

70cm.

1 arcsec

80cm.

1 Ircsec

150cm.

2 arcsec

100cm.

2 aPcsec

70cm.

.Scm/sec

lcm/sec

2 arcsec

2 arcsec

2 arcsec

2 Ircsec

2 8rcsec

2 |P0580

SIGMA*

WEIGHTS
^

o
t

112cm.

224cm.

816cm.

816cm.

577cm.

5.6 arcsec

667cm.

8.9 arcsec

816cm.

8.9 arcsec

816cm.

7.3 arcsec

816cm.

8.9 arcsec

707cm.

7cm/sec

8cm/sec

4.5 arcsec

4.5 :rcsec

4.5 arcsec

4.5 arcsec

4.5 arcsec

4.5 arcsec
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TABLE 1B

NEW SATELLITE DATA IN GEM-T2 IN ADDITION TO GEM-T1
Ot Ot

SEMI MAJOR INCL DATA # OF # OF RMS SIGMA"

AXIS fkm._ E--CC ITL--G. _ ARCS ORS. RESID. WEIGHTS

LAGEOS 12273
'84,'$5,'86,'87

STARLETTE 7331
°83/84

STARLE'I-rE
'86

AJISAI 1500

GEOS-1 '80

GEOS-3 '80

GEOS-3
GEOS-3:ATS

'75.'76

GEOS-3".ATS
'77,°78/79

NOVA 1170

LANDSAT-1 900

GEOSAT 800

OVI-2 8317

ECHO-1RB 7966

SECOR-5 8151

INJUN-1 7316

TRANSIT-4A 7322

5BN-2 7462

OGO-2 7341

OSCAR-7 7411

MIDAS-4 9995

29 134093 10cm. 112cm..0038 109.85 LASER

.024 49.80 LASER

LASER

.0006 50.0 LASER 36 156021 16cm. 316cm.

8075 .0719 59.39 LASER 30 54129 32cm. 258cm.

7226 .0008 114.98 LASER 50 54526 25cm. 224cm.

LASER 26 17027 70cm. 816cm.
SST 9 19074 .4cm/sec 7.1cm/sec

SST 17 8326 .2cm/$ec 3.2cm/sec

38 40041 20cm. 224cm.

73 411102 20cm. 500cm

.0011 89.96 DOPPLER 16 73238 .4cm/$ec 2.6cm/sec

.00i2 99.12 DOPPLER 10 26426 1.5cm/$ec 10.5cmlsec

.0008 108.0 DOPPLER 13 549141 1.3cm/sec 4.5cm/$ec

.0184 144.27 CAMERA 4

.0118 47.21 CAMERA 32

.0793 69.22 CAMERA 13

.0079 66.82 CAMERA 44

.0076 66.82 CAMERA 50

.0058 89.95 CAMERA 17

,0752 87.37 CAMERA 16

.0224 89.70 CAMERA 4

.0112 95.83 CAMERA 50

973 2 srcse¢ 5.8 =reset

4482 2srcsec 8.2 srcsec

726 2 ,,reset 5.8 =reset

3310 2 ircsec 8.2 srcsec

3832 2 srcsec 8.2 srcsec

820 2 arcsec 8.2 Ilrcsec

1207 2arcsec 8.2 arcsec

1862 2arcsec 5.8 arcsec

31779 2 arcsec 6.2 arcsec
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TABLE 2

TEST FOR OPTIMUM WEIGHTING TECHNIQUE

WITH GEM-TI AS SUBSET SOLUTION

(TWO ITERATIONS)

wt

w't : _t

GEM-TI + kt wt w[

1980 GEOS-I LASER .49 .05 .10

(30 ARCS) .88 .I0 .11

STARLETTE LASER .46 .020 .043

(73 1986 ARCS) .78 .043 .055

NOVA DOPPLER 1.60 .I .062

(16 ARCS) 1.02 .062 .061

9 NEW OPTICAL SATS. 3.2 .2 .063

(230 ARCS) .97 .O63 .O65

LANDSAT S-BAND .60 .O025 .0042

(10 ARCS) .98 .0042 .0043
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DATA WEIGHTS

SUBSET PGS3429
SOLUTION CALIBRATION PGS3429
_TASET F_ _,l-rm

AJISAI 1.28 .4

I.AGEOS 1.29 .8

STARLE'R'E 1.04 .2,.2,.04

4-LASER* 1.02 .015

_T .59 .01

GEOS.3:ATS .68 .015,.1 ,.02

LASEFLSST

NOVA .82 .07

LANDSAT .90 .0075

1980 GEOS-3 .86 .1
LASER

1980 GEOS-1 .87 .1
LASER

OPTICAL* .95 .05,.06

SEASAT .02

OSCAR .015

3-LASER* .015

°

2.

3.

TABLE 3

AND CALIBRATION OF GEM-T2

PGS3454
PGS3454 CAUBRATION

(2)
PGS3480 GEM-T2

PGS3480 CNJBRATION GEM-T2 CNJBRATION

WEIGHTS _ WB(_TS BQ_I_WBG_ F/C'TO_

.3 (1) 1.21 .2 1.29 .1 .79

.8 1.00 .8 1.11 .8 .87

.2,.2,.04 1.01 .2,.2,.04 .96 .2,2,04 .96

.015 1.00 .015 .96 .015 1.01

.66 _ .75 .0S .81

(3)
.015,.05..02 .73 .015,.1..02 .66 .015,.1,02 .66

.O75 .83 .1 .83 .15 .90

.0075 .90 .009 .92 .009 .92

.15 .91 .2 .97 .2 .96

.15 .97 .15 .99 .15 1.05

.05,.06 .95 .05,.06 .94 .05,.06 .92

.02 1.02 ,02 .97 .02 .94

.015 1.47 .007 .95 .007 1.13

•015 .82 .015 .83 .02 .87

UNDERMNED WEIGHTS ARE THE ADJUSTED ONES IN THE rrERATED SOLUTIONS

CAUBRATION FACTORS ARE _ATNE BUr 8t,FIRCIB4_Y

ATS SST WEIGHT DEUBERATELY UNDERWEIGHTED BASED UPON COMPARISX_)N WiTH
SEASAT ALTIMETER ANOMAUES

4-LASER dataset is laser data from GEOS-1, GEOS-2, GEO8-3 and BE-C satellites
3-LASER dataset is laser data from DI-C, DI-D, and PEOLE saldilsa
OPTICAL dataset is the camera data from 20 satemtsa shown In TABLE 1A and 1B
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TABLE 4

SUMMARY OF RESULTS FOR ERROR'CALIBRATION

GEM-T1 vs. GEM-T1 minus DATA SUBSET

CALIBRATION
FACTOR

4-LASERS (GEOS 1,2,3, BE-C) ............. 1.06

STARLETTE LASER ..................... 1.10

OSC;AR + SEASAT DOPPLER ............. 1.09

OPTICAL ( 11 SATS ) ................... 0.84

LAGEOS LASER ....................... 1.45

GEM-T1 vs. GEM-T1 + SURFACE GRAVITY ........ 0.95

GEM-T1 vs. GEM-T1 + SURFACE GRAVITY +
SEASAT ALTIMETER ............... 0.94

GEM-T1 vs. SURFACE GRAVITY + SEASAT
ALTIMETER ................... 0.99

GEM-T1 minus LAGEOS vs. LAGEOS +
SURFACE GRAVITY + SEASAT ALTIMETER 0.95

Weighting Factor f=0.2
10 TIMES DATA WEIGHTOF GEM-T1

GEM-T1 vs. GEM-T1 minus 4-LASERS 2.75
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